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1. Phys. A Math. Gen. 26 (1993) U45-LZ50. Printed in the UK 

LElTER TO THE EDITOR 

Fricke-Hein geometry for the group SZ(2, C) 

Peter Kramer 
Institut f i r  Theoretische Physik der Universitit Tiibingen, Tiibingen, Federal Republic of 
Germany 

Received 3 December 1992 

Abstract. The homomorphisms from the free group F2 with two generators to the complex 
unimodular group SI(2, C )  are classified. The action induced by the automorphism p u p  

of F? on pain of elements from Sf(2, C) is expressed in a geometry inspired by Frickc 
and Klein. 

The quantum mechanics of spin waves, electrons and phonons in non-periodic poten- 
tials involves a homomorphism hl from the free group F2 with 2 generators to the 
groups S U ( 2 )  and SU(1, l), and an induced action of the automorphism group Q2 of 
F2 on the images under h , .  We refer to [7] for the groups F2, C J ~  and their generators. 
Some applications of this homomorphism are treated by Sutherland [SI and by Iguchi 
[4]. For the present geometric and algebraic approach we refer to [l, 5,6], where 
reference is given to published work in this field. Since the group SZ(2, C) contains 
both groups as subgroups, this group allows for a unified approach to homomorphisms 
h, : F2+ S1(2, C) and the induced action of Q2, which are presented in what follows. 

Forthe groups SU(2),  SU( 1, l ) ,  the Fricke-Klein geometry [ 5 , 6 ]  works as follows: 
Assign to three group elements g,, g,, g3 from the groups SU(2) ,  SU(1, l )  obeying 
g,gzg3 = e three dual (real) unit vectors $, 5’. t3 whose scalar products are the traces 
of the group elements divided by two. To the generators P, U, U [7] of a2 associate a 
transformation of these three vectors: The images of c‘, 6’. 5’ under these generators 
are linearly expressed by these vectors and by their scalar products as 

(C’C2C3) = (5’52f3)D(P) (1) 

with the transformation matrices 

- 1  
D ( P ) =  -1 0 

z s ( p .  5 3 )  2 & ( t 3 .  51) 1 

[’ [ O  ‘ - 1  0 :] 
D ( u ) =  0 

o z s ( y 2 . y 3 )  1 

2463.51)  o 1 
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The transformations are nonlinear due to the appearance of the scalar products. The 
number E takes the value E = 1 for SU(2) ,  and E = + I  for SU(1,l). In what follows 
we shall generalize these vectors and their transformations to the complex group 

We now consider the class types of Sl(2,  C). We begin with the remarks on the 
complex function w = cosh(z). The upper half-strip z E CO, m) + i(0, a) is mapped 
one-to-one into the upper half-plane, w = cosh(z) E (-00, a) t i(0,oo). We shall need, 
for the parametrization of group elements, only this half-strip and half-plane, and use 
this map for the inverse function. To the number z we assign a unique square root 
z’/’ within the same half-strip. Next we study the eigenvalue problem of the matrix 

Sl(2, C). 

g=[; ; ] E s l ( 2 , C )  a& - p y  = 1. (3) 

The eigenvalues of g are 

A,,’ =4( a + 8) f [t( a t S)2 - I]”* A1A2=1. (4) 

Clearly, the class types can be characterized by the traces of the group elements. Now 
we describe the Lorentz-rotation class type C,: If (a + 8) # G!, we can always choose 
A I  in the upper and A2 in the lower halfplane. With this choice of an orientation of 
the group parameters, and with the prescription given for the function w = cosh(z) 
and its inverse, we determine a unique complex number z :  A ,  + Az = 2 cosh( z). The real 
and imaginary part of z yield the exponential class-parameters of a commuting pair 
of an orthochronous Lorentz transformation and a rotation, respectively. The stability 
group of this representative diagonal form 

1 exp(iz) 0 
exp(-iz) (5) 

consists of all diagonal elements of Sl(2, C). The coset generators cL with respect to 
this stability group may be parametrized by two complex angles, which correspond to 
the Euler angles, are generated by the Pauli matrices m2 and U, respectively, and yield 
the general element g L =  c&.c;’ of the class. These two complex angles are the in-class 
parameters. Finally we note that the unique choice of zl/’ in the half-strip described 
above determines a unique group element g:”. 

If a + S = 2 and p = y = 0 we get g = e. Its class we denote by Co. Next we consider 
the Jordan class type CJ characterized by LY + 6 = 2, ]PI2+ I y1’> 0. Now the representative 
element is 

d=[; :]. 
The stability group of gy  consists of all upper triangular elements with diagonal entries 
1, its cosets in Sl(2, C) are given by the factors 

of the Gauss decomposition. The parameters p, a are the in-class parameters. By 
conjugation one finds the general element of the Jordan class type in the form 
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A unique element g:" is given by the replacement 

and conjugation with cJ. The element -eESZ(2, C) forms a class -CO by itself. By 
multiplication it determines a second Jordan class type -CJ with trace a + S = -2 and 
otherwise similar class characterization. 

The adjoint action and the group SO(3, C) are considered next. We use a complex 
exponential parametrization of Sl(2, C) with the Pauli matrices as a basis of the 
complex Lie algebra. On C 3  we use the scalar product 

3 

i = l  
a .  b = a,b,. 

This scalar product corresponds to the complex Killing metric of sZ(2, C). Then for 
all elements with the class type C,, C, we get 

3 

Here 9 is a complex vector. For the class types C,, CJ the numbers <, p are of the form 
type C,: 6 =cosh z p = sinh z 9.9 '1  

type C,: < = 1 q.v=o. (12) 

The complex adjoint action of Si(2, C) is defined by the conjugation g'+Ad,(g') = 
gg'g-', it transforms the components of a complex vector 7 as 

qj + $1 = C (Adg)jivi. (13) 
I=, 

In terms of the four matrix elements a, p, y, S of g, this complex matrix reads 
5(a2-82- y2+ 82) i ( 4  -p2+ y2+ S2)/2 (-ab + yS) 

(Ad,) = i (n2-P2+ y2-S2) /2  ! (a2+pz+ y z +  8') -i(np + 78) ] . (14) [ (-ar+PS) i(or+pa) (aS+Pr) 
This matrix must conserve the complex scalar product equation (10) and hence must 
belong to SO(3, C). The homomorphism from Sl(2, C) to SO(3, C) is two-to-one 
since Ad-,, = Ad,. . The homomorphism may also be seen as the symmetrized Kronecker 
square of the defining representation of SZ(2, C), corresponding to the Young diagram 
@I. 

We are now ready to classify pairs of group elements from Si(2, C )  modulo the 
adjoint action. Let g,, g, denote two elements of Sl(2,  C) in the parametrization 
equation (1  1). Their product we denote by g;' = g,g2 and obtain from the multiplication 
of the Pauli matrices 

, ~ ~ ~ ~ = - ~ ~ 6 ~ ; 9 ~ - 6 ~ ~ ~ ~ ~ + ~ ~ ~ ~ ~ ( r l ' ~ v ~ )  
63 = 5&+ PI PZ(* l  . 9,). 

(15) 

Here the sign x denotes the standard vector product extended to complex vectors in C'. 
Given three group elements g, , g,, g3 which obey g,g2g3 = e, we define the Fricke- 

Klein geometry [5], [3] of this triple in terms of three complex unit vectors e', e', e3 



U48 Letter to the Editor 

with the properties 
j #  k: p. 9 k  = o  

(16) 

We shall prove the existence of these vectors by an explicit construction. First of all 
we note that, under the adjoint action applied to all three elements g,, the vectors t j  

transform according to the complex coadjoint action, which may be identified with 
the adjoint action since both are complex orthogonal. Therefore it suffices to consider 
pairs g,, g2 from the various class types. Here we restrict the discussion to the class 
types CL, C, since all other cases are obtained by multiplication with -e. 

We now classify pairs modulo the adjoint action and use for this the results given 
earlier in this letter. One of the two group elements may then be chosen as the 
representative of its class type. The second one may, afier this choice, still be conjugated 
with elements from the stability group of the first one. In table 1 we give the representa- 
tive pairs from the class types CL, C,,  the vectors q‘, the traces of the group elements, 
and the dual vectors .$I. Their scalar products obey equation (16). A fixed triple of 
vectors .$’, e’, c3 admits an interpretation in terms of a complex Coxeter group [Z], 
acting on C3 via the Weyl reflections 

r, :x+  x-Z(x. $)ti. (17) 

r2r, =Ad, r3r2 = Ad,, r,r3 = Ad,. (18) 

ttr(g,)=IE,,k)2(~J..$I).  

Multiplication of pairs of Weyl reflections yields 

This means that the subgroup of SO(3, C )  generated by the adjoint action of g,, g2, g, 
is the subgroup of this Coxeter group, generated by products of an euen number of refections. 

Table 1. Representative pairs of group elements from Sl(2, C )  and their data. 
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Conversely, it is possible to obtain the triple 5‘ from the adjoint action: Consider 
the vector b3= 9‘ x 9’ and the square roots gf”, g:”, and construct the images 

b1 = Ad(g;m)(bS) b2 =Ad(&(b3). (19) 

Assume that b3 has non-zero length. If f’ is the unit vector proportional to b3, then 
e’, are the images of this vector according to equation (19). 

Boo$ Explicit computation of the adjoint action for the representative pairs given in 
table 1. 

As a corollary of this construction we have: The three vectors 6’ are on a single orbit 
under the adjoint action of Sl(2, C ) .  

For the group SU(2) ,  the real triples of unit vectors q i  and & form a pair of dual 
triangles. In figure 1 we give the intuitive planar representation of the spherical triangle 
spanned by q’, q2, q3, of the dual vectors &. seen in tangential planes to this triangle, 
and of the real rotation angles a,. The relations given in equation (19) for the subgroups 
S U ( 2 ) ,  SO(3, R )  can be seen from this figure. 

Figure 1. Planar representation of the spherical  angle formed by the three real vectors 
n‘, the three tangential vectors g, and the half-angles of rotation a, for the Fricke-Klein 
geometry of SU(2) .  

Consider now a homomorphism h,:F2+S1(2,  C). It suffices to study the 
homomorphisms h, modulo the adjoint action of Sl(2, C) .  Then the homomorphisms 
h,  are classified by the representative pairs given in table 1. In equations (1) and ( 2 )  
we give a nonlinear representation of the automorphism group (Pz as an action on a 
triple of vectors e‘, e’, 13. We take E = 1 and extend this nonlinear representation of 
@, to the group Sl(2, C) ,  by interpreting the vectors and matrices in C’ rather than 
R’. These transformations provide an action of the group @* on pairs (and triples) of 
group elementsfrom Sl(2, C ) .  Since they represent the generators of a2, this action is 
defined for the full automorphism group. The trace-map discussed in [ 1,4,8] results 
by computing from equation ( 2 )  the map of the three non-trivial scalar products 
a,,=(&.&‘) under@,. 
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The complex symmetric matrix a =(a,,), whose entries are all the nine scalar 
products, play an important part for the Coxeter group. Written in terms of the traces 
by use of equation (16), which are called Fncke characters, its real counterpart was 
considered first by Fricke and Klein [3] and related to the group commutator. Since 
the generating matrices equation (2) all have determinant *l,  the determinant of a is 
an invariant under all trace maps. We refer to [5,6] for algebraic and geometric relations 
due to Nielsen, to Fricke and Klein and to other authors, which generalize to the 
present complex geometry. 
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